Structural Studies in Metal-Purpurate Complexes. Part 8.† Crystal Structure of Triaquapurpuratocalcium Nitrate Dihydrate

By Colin L. Raston, Allan H. White,* and Anthony C. Willis, Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, 6009, Western Australia

The crystal structure of the title compound, $\left[\mathrm{CaL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left[\mathrm{NO}_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($\mathrm{L}=$ purpurate), has been determined at 295 K by X-ray diffraction and refined by least squares to $R 0.050$ (1545 ' observed ' reflections). Crystals are monoclinic, space group Pn, $a=11.282(5), b=9.111(3), c=9.045(4) \AA, \beta=105.70(3)^{\circ}, Z=2$. Coordination about the calcium is approximately eight-co-ordinate dodecahedral. One of the trapezoidal planes comprises the usual tridentate purpurate site [Ca-O, 2.567(4), 2.429(4); $\mathrm{Ca}-\mathrm{N}, 2.600(5) \mathrm{A}$] and a further purpurate bridging oxygen [$\mathrm{Ca}-\mathrm{O}, 2.361$ (5) \AA] while the other comprises the three co-ordinated water molecules $[\mathrm{Ca}-0.2 .372(7), 2.378(5), 2.460(5) \AA$] and another bridging purpurate oxygen [Ca-O, 2.548(6) \AA], an infinite polymer resulting parallel to $b c$. The geometry within the nitrate is very asymmetric [$\mathrm{N}-0.1 .213(10)-1.282(14)$ $\AA . \mathrm{O}-\mathrm{N}-\mathrm{O}, 115.7(8)-122.9(8)^{\circ}$], and is found to correlate closely with the observed hydrogen bonding about the nitrate.

A previous paper in this series ${ }^{1}$ has described the preparation of calcium-purpurate complexes and the crystalstructure determination of one of them; the present paper reports the crystal-structure determination of a derivative reported in that paper as having the stoicheiometry $\left[\mathrm{CaL}\left(\mathrm{NO}_{3}\right)\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($\mathrm{L}=$ purpurate, $\left[\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{5} \mathrm{O}_{6}\right]^{-}$), this stoicheiometry being confirmed in the process.
\dagger Part 7 is the preceding paper.

EXPERIMENTAL
Crystallographic Data and Procedure. $-\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{CaN}_{6} \mathrm{O}_{14}$, $M=458.3$, Monoclinic, space group $P n$ (variant of C_{s}^{2}, No. 7), $a=11.282(5), b=9.111(3), c=9.045(4) \AA, \beta=105.70-$ $(3)^{\circ}, U=895.1(6) \AA^{3}, D_{\mathrm{m}}=1.70(1) \mathrm{g} \mathrm{cm}^{-3}, Z=2, D_{\mathrm{c}}=$ $1.70 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=472$, crystal size $0.29 \times 0.22 \times$ ($0.19,0.42$) mm , (trapezoid), $\mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=3.77 \mathrm{~cm}^{-1}$ (data ${ }^{1}$ D. L. Kepert, A. H. White, and A. C. Willis, Part 2, J.C.S. Dalton, 1977, 1342.

Table 1
Atomic fractional cell co-ordinates $\left[(x, y, z) ; \mathrm{H} \times 10^{3}\right.$; others $\left.\times 10^{4}\right]$ and thermal parameters ($U_{i j}, 10^{3} \AA^{2}$) with leastsquares estimated standard deviations in parentheses

Atom	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ca	2500 (-)	1 194(1)	$2500(-)$	28.5(6)	10.1(5)	10.7(5)	-0.3(5)	2.6(4)	$-1.2(5)$
The purpurate ligand									
$\mathrm{N}(0)$	$2830(5)$	$-0820(5)$	4 610(6)	25(3)	16(3)	17(3)	$1(2)$	6(2)	-2(2)
C(11)	2929 (6)	-0 346(7)	6 026(7)	27(3)	16 (3)	$19(3)$	$1(3)$	$6(3)$	$3(2)$
$\mathrm{C}(12)$	3245 (6)	$1201(7)$	$6302(8)$	$22(3)$	19(3)	$21(3)$	3(3)	$1(3)$	0 (3)
$\mathrm{O}(12)$	3 339(4)	2067 (4)	5 286(5)	46(3)	$11(2)$	$12(2)$	-3(2)	$8(2)$	3(2)
N(13)	3488 (6)	1 676(6)	7 785(7)	49(4)	13(2)	14(3)	$-5(3)$	10 (2)	-6(2)
$\mathrm{H}(13)$	361 (11)	239 (13)	787(15)	80 (-)					
$\mathrm{C}(14)$	3278 (6)	0 878(7)	8 976(7)	27(3)	25(3)	17(3)	2(3)	6(3)	-2(3)
$\mathrm{O}(14)$	3471 (5)	$1397(5)$	$10271(5)$	$51(3)$	28(3)	14(2)	-6(2)	10(2)	-6(2)
$\mathrm{N}(15)$	2 786(6)	-0491(6)	8 618(6)	46(4)	15(3)	15(3)	$-3(3)$	10(2)	3(2)
$\mathrm{H}(15)$	265(12)	$-110(11)$	890 (15)	$80(-)$					
$\mathrm{C}(16)$	2517 (7)	-1144(7)	$7172(7)$	34(4)	25(3)	13(3)	0(3)	8(3)	3(3)
$\mathrm{O}(16)$	1919 (6)	-2 290(6)	6 957(6)	75(4)	32(3)	24(3)	-29(3)	22(3)	$-7(3)$
C(21)	$2781(6)$	-2 202(7)	4140 (6)	$26(3)$	$19(3)$	9 (3)	-2(3)	1 (2)	-4(3)
$\mathrm{C}(22)$	2 413(6)	-2 365(7)	2476 (8)	$16(3)$	24(3)	$17(3)$	3(3)	4(2)	$3(3)$
$\mathrm{O}(22)$	2251 (5)	-1320(5)	1570 (5)	$53(3)$	10(2)	16(2)	3(2)	7 (2)	5(2)
$\mathrm{N}(23)$	2 265(6)	$-3781(5)$	$1917(6)$	46(4)	10(3)	11(2)	-2(2)	4(2)	-7(2)
$\mathrm{H}(23)$	218(11)	-394(12)	069(13)	80 (-)					
$\mathrm{C}(24)$	2527 (7)	-5003(6)	$2787(7)$	$32(3)$	10(3)	13(3)	$-1(3)$	6(3)	1(2)
$\mathrm{O}(24)$	$2375(6)$	-6 233(5)	$2190(5)$	$62(4)$	19(2)	$20(3)$	-2(2)	$0(3)$	-3(2)
N(25)	$3035(6)$	-4 824(6)	4330 (7)	$51(4)$	7(3)	$23(3)$	$-1(3)$	7 (3)	4(2)
$\mathrm{H}(25)$	305(11)	-552(13)	477(13)	80 (-)					
C(26)	$3245(6)$	-3485(6)	5 073(7)	$36(4)$	7(3)	17(3)	-2(3)	3(3)	8(2)
$\mathrm{O}(26)$	$3888(5)$	-3448(5)	6 403(5)	66(4)	15(2)	12(2)	$-1(2)$	$-4(2)$	6(2)
The water molecules $\left[\gamma(\AA)\right.$ is $\mathrm{O}-\mathrm{H} ; \gamma\left(^{\circ}\right)$ is $\mathrm{M}-\mathrm{O}-\mathrm{H}$, and $\delta\left({ }^{\circ}\right)$ is $\left.\mathrm{H}-\mathrm{O}-\mathrm{H}\right]$									
Atom	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{O}(1)$	0 804(6)	$1184(6)$	$0265(6)$	43(3)	34(3)	26(3)	$-1(3)$	-3(2)	3(2)
$\mathrm{H}(1 \alpha)$	090(13)	171(14)	-018(16)	$80(-)$	$\boldsymbol{r}=0.6$; $\gamma=6$			
$\mathrm{H}(1 \beta)$	Not locat								
O(2)	4 764(5)	$1200(6)$	3 320(6)	38(3)	50(3)	14(2)	$-1(3)$	4(2)	1 (2)
$\mathrm{H}(2 \alpha)$ $H(2 \beta)$	$508(11)$ $522(11)$	$168(13)$ $208(13)$	$254(13)$ $397(14)$	$80(-)$	$r=1.0$ $r=1.0$	$\gamma=11$ $\gamma=11$	6) $\} \delta=$		
$\mathrm{H}(2 \beta)$ $\mathrm{O}(3)$	$522(11)$ $0680(6)$	(208(13)	$397(14)$ $3323(7)$	$80(-)$ $40(7)$	$r=1.0$ $63(4)$	$\gamma=11$ $18(3)$	$13(3)$	6(2)	9(3)
$\mathrm{H}(3 \alpha)$	022(11)	177(13)	254(14)	80(-)	$r=0.8$	$\gamma=99$	0) $\delta=$		
$\mathrm{H}(3 \beta)$	063(12)	125(13)	413 (15)	80 (-)	$r=0.8$	$\gamma=12$	10) $\}^{\delta}=$		
$\mathrm{O}(4)$	0978 (6)	$6033(6)$	$8843(6)$	62(4)	36(3)	29(3)	$-7(3)$	15(3)	4(2)
$\mathrm{H}(4 \alpha)$	129(12)	623(13)	827(14)	80 (-)	$r=0.7$				
$\mathrm{H}(4 \beta)$	Not loca								
$\mathrm{O}(5)$	-0179(8)	$5743(7)$	$3455(8)$	96(6)	38(3)	46(4)	10(4)	$0(4)$	$5(3)$
$\mathrm{H}(5 \alpha)$	-001(11)	512(13)	454(13)	$80(-)$					
$\mathrm{H}(5 \beta)$	$-110(11)$	547(13)	385(12)	$80(-)$	$r=1.2$	$=66$			
The nitrate ion									
N	0 377(7)	$2766(8)$	6 744(7)	69(5)	44(4)	25(3)	16(4)	13(3)	11(3)
$\mathrm{O}(\mathrm{a})$	0 437(7)	1 466(7)	6 483(7)	$76(5)$	45(4)	$51(4)$	$-1(3)$	14(3)	$-10(3)$
$\mathrm{O}(\mathrm{b})$	$0177(6)$	3245 (6)	$7946(6)$	79(4)	37(3)	$31(3)$	3(3)	$21(3)$	$-3(3)$
O (c)	0 702(15)	3 725(11)	$5892(11)$	277(16)	96(8)	70(6)	62 (8)	$95(8)$	46(5)

corrected for absorption), data range $2 \theta<50^{\circ}$ yielding 1580 reflections (1545 ' observed '), final $R=0.051, R^{\prime}=$ 0.051 ($n=1$).

The structure was solved by the heavy-atom method and refined using 9×9 block-diagonal least squares; in the final refinement stages the parameters of the metal atom and the atoms in its immediate environment were refined as a single block, the atom parameters of each of the purpurate ligand-ring systems being refined similarly. Non-hydrogenatom thermal motion was refined anisotropically. Hydrogen atom positional parameters were all refined, U (isotropic) being constrained at $0.08 \AA^{2}$.

Observed and calculated structure factors are deposited as Supplementary Publication No. SUP 21994 (6 pp., I microfiche).* Atom fractional cell co-ordinates are in Table 1.

discussion

The structure determination confirms the stoicheiometry as being $\left[\mathrm{CaL}\left(\mathrm{NO}_{3}\right)\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$, the asymmetric unit
comprising this formula unit: the structure, however, is not simply represented by this description, being polymeric and complex. This complexity arises as a result of interspecies interactions originating in the bridging of neighbouring calcium atoms by polydentate purpurate ligands; the latter, while co-ordinating to the calcium in the usual tridentate manner through $\mathrm{O}(12,22)$ and $\mathrm{N}(0)$ also co-ordinate to adjacent calcium atoms by way of $\mathrm{O}(14,24)$ so that a wrinkled two-dimensional polymer parallel to the $b c$ plane is formed, the purpurate occupying five of the eight co-ordination sites about each calcium atom. The remaining three co-ordination sites about the calcium are occupied by the water-molecule oxygen atoms $\mathrm{O}(1,2$, and 3$)$; the remaining two water molecules and the nitrate ion occupy lattice sites so that the formulation of the complex is $\left[\left\{\mathrm{CaL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right\}_{n}\right]\left[\mathrm{NO}_{3}\right]_{n}$.

* For details see Notice to Authors No. 7 in J.C.S. Dalton, 1976. Index issue (items less than 10 pp . are supplied as full-size copies).

Table 2
Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with least-squares estimated standard deviations in parentheses. Intramolecular geometries of the water molecules are inaccurate and are not given
(a) The purpurate geometry; as in previous papers in this series, the geometries of the two halves of the barbiturate ring are tabulated in parallel columns. Entries within each column are for the two rings $n=1$ and 2

$\mathrm{N}(0)-\mathrm{C}(n 1)$	$1.327(8), 1.326(8)$
$\mathrm{C}(n 1)-\mathrm{C}(n 2)$	$1.459(9), 1.456(9)$
$\mathrm{C}(n 2)-\mathrm{O}(n 2)$	$1.238(8), 1.238(8)$
$\mathrm{C}(n 2)-\mathrm{N}(n 3)$	$1.364(9), 1.379(8)$
$\mathrm{N}(n 3)-\mathrm{H}(n 3)$	$0.7(1), 1.1(1)$
$\mathrm{N}(n 3)-\mathrm{C}(n 4)$	$1.372(10), 1.349(8)$
$\mathrm{C}(n 4)-\mathrm{O}(n 4)$	$1.227(8), 1.235(7)$
$\mathrm{C}(11)-\mathrm{N}(0)-\mathrm{C}(21)$	$127.1(6)$
$\mathrm{N}(0)-\mathrm{C}(n 1)-\mathrm{C}(n 2)$	$115.6(6), 113.8(5)$
$\mathrm{C}(n 1)-\mathrm{C}(n 2)-\mathrm{O}(n 2)$	$123.6(6), 123.7(6)$
$\mathrm{O}(n 2)-\mathrm{C}(n 2)-\mathrm{N}(n 3)$	$119.6(6), 119.7(6)$
$\mathrm{C}(n 1)-\mathrm{C}(n 2)-\mathrm{N}(n 3)$	$116.7(6), 116.5(5)$
$\mathrm{C}(n 2)-\mathrm{N}(n 3)-\mathrm{H}(n 3)$	$114(12), 117(6)$
$\mathrm{H}(n 3)-\mathrm{N}(n 3)-\mathrm{C}(n 4)$	$120(12), 115(6)$
$\mathrm{C}(n 2)-\mathrm{N}(n 3)-\mathrm{C}(n 4)$	$124.9(6), 124.9(5)$
$\mathrm{N}(n 3)-\mathrm{C}(n 4)-\mathrm{O}(n 4)$	$121.5(6), 120.75)$
$\mathrm{N}(n 3)-\mathrm{C}(n 4)-\mathrm{N}(n 5)$	$116.3(6), 117.5(5)$
$\mathrm{C}(n 2)-\mathrm{C}(n 1)-\mathrm{C}(n 6)$	$118.3(6), 118.4(5)$
$\mathrm{Ca}-\mathrm{N}(0)-\mathrm{C}(n 1)$	$115.9(4), 116.7(4)$
$\mathrm{C}-\mathrm{O}(n 2)-\mathrm{C}(n 2)$	$116.7(4), 120.9(4)$
$\mathrm{C} a-\mathrm{O}(n 4)-\mathrm{C}(n 4)$	$136.4(5), 148.4(4)$

$\mathrm{C}(n 1)-\mathrm{C}(n 6)$	$1.443(10), 1.453(8)$
$\mathrm{C}(n 6)-\mathrm{O}(n 6)$	$1.230(9), 1.226(7)$
$\mathrm{C}(n 6)-\mathrm{N}(n 5)$	$1.394(8), 1.382(8)$
$\mathrm{N}(n 5)-\mathrm{H}(n 5)$	$0.7(1), 0.7(1)$
$\mathrm{N}(n 5)-\mathrm{C}(n 4)$	$1.369(9), 1.368(8)$
$\mathrm{O}(16) \cdots \mathrm{O}(26)$	$2.627(9)$
$\mathrm{N}(0)-\mathrm{C}(n 1)-\mathrm{C}(n 6)$	$124.8(6), 126.9(5)$
$\mathrm{C}(n 1)-\mathrm{C}(n 6)-\mathrm{O}(n 6)$	$125.7(6), 124.9(5)$
$\mathrm{O}(n 6)-\mathrm{C}(n 6)-\mathrm{N}(n 5)$	$118.8(7), 118.6(5)$
$\mathrm{C}(n 1)-\mathrm{C}(n 6)-\mathrm{N}(n 5)$	$115.4(6), 116.1(5)$
$\mathrm{C}(n 6)-\mathrm{N}(n 5)-\mathrm{H}(n 5)$	$90(11), 121(9)$
$\mathrm{H}(n 5)-\mathrm{N}(n 5)-\mathrm{C}(n 4)$	$144(11), 113(8)$
$\mathrm{C}(n 6)-\mathrm{N}(n 5)-\mathrm{C}(n 4)$	$125.6(6), 124.8(5)$
$\mathrm{N}(n 5)-\mathrm{C}(n 4)-\mathrm{O}(n 4)$	$122.2(7), 121.6(5)$

(b) Calcium geometry

$\mathrm{Ca}-\mathrm{O}(1)$	$2.378(5)$
$\mathrm{Ca}-\mathrm{O}(2)$	$2.460(5)$
$\mathrm{Ca}-\mathrm{O}(3)$	$2.372(7)$
$\mathrm{Ca}-\mathrm{N}(0)$	$2.600(5)$
$\mathrm{O}(1)-\mathrm{Ca}-\mathrm{O}(2)$	$141.9(2)$
$\mathrm{O}(1)-\mathrm{Ca}-\mathrm{O}(3)$	$72.6(2)$
$\mathrm{O}(1)-\mathrm{Ca}-\mathrm{N}(0)$	$122.9(2)$
$\mathrm{O}(1)-\mathrm{Ca}-\mathrm{O}(12)$	$146.5(2)$
$\mathrm{O}(1)-\mathrm{Ca}-\mathrm{O}(22)$	$73.2(2)$
$\mathrm{O}(1)-\mathrm{Ca}-\mathrm{O}\left(14 \mathbf{I}^{\mathrm{I}}\right)$	$75.4(2)$
$\mathrm{O}(1)-\mathrm{Ca}-\mathrm{O}\left(24^{\mathrm{II}}\right)$	$83.9(2)$
$\mathrm{O}(2)-\mathrm{Ca}-\mathrm{O}(3)$	$145.3(2)$
$\mathrm{O}(2)-\mathrm{Ca}-\mathrm{N}(0)$	$81.4(2)$
$\mathrm{O}(2)-\mathrm{Ca}-\mathrm{O}(12)$	$68.1(2)$
$\mathrm{O}(2)-\mathrm{Ca}-\mathrm{O}(22)$	$96.9(2)$
$\mathrm{O}(2)-\mathrm{Ca}-\mathrm{O}(14 \mathrm{I})$	$66.7(2)$
$\mathrm{O}(2)-\mathrm{Ca}-\mathrm{O}\left(24 \mathrm{I}^{\mathrm{II}}\right)$	$93.3(2)$
$\mathrm{O}(3)-\mathrm{Ca}-\mathrm{N}(0)$	$\mathbf{7 7 . 5 (2)}$

(c) The nitrate geometry

$\mathrm{N}-\mathrm{O}(\mathrm{a})$	$1.213(10)$
$\mathrm{N}-\mathrm{O}(\mathrm{b})$	$1.247(10)$
$\mathrm{N}-\mathrm{O}(\mathrm{c})$	$1.282(14)$

$\mathrm{Ca}-\mathrm{O}(12)$	2.567(4)
$\mathrm{Ca}-\mathrm{O}(22)$	$2.429(4)$
$\mathrm{Ca}-\mathrm{O}\left(14{ }^{\text {r }}\right.$)	2.548 (6)
$\mathrm{Ca}-\mathrm{O}(24 \mathrm{II})$	2.361 (5)
$\mathrm{O}(3)-\mathrm{Ca}-\mathrm{O}(12)$	77.9(2)
$\mathrm{O}(3)-\mathrm{Ca}-\mathrm{O}(22)$	98.4(2)
$\mathrm{O}(3)-\mathrm{Ca}-\mathrm{O}(14 \mathrm{I})$	146.8(2)
$\mathrm{O}(3)-\mathrm{Ca}-\mathrm{O}\left(24{ }^{\text {II }}\right.$)	86.4.2)
$\mathrm{N}(0)-\mathrm{Ca}-\mathrm{O}(12)$	63.7 (1)
$\mathrm{N}(0)-\mathrm{Ca}-\mathrm{O}(22)$	64.5(2)
$\mathrm{N}(0)-\mathrm{Ca}-\mathrm{O}(14 \mathrm{I})$	128.7(2)
$\mathrm{N}(0)-\mathrm{Ca}-\mathrm{O}\left(24{ }^{\text {II }}\right.$)	141.2(2)
$\mathrm{O}(12)-\mathrm{Ca}-\mathrm{O}(22)$	127.5(1)
$\mathrm{O}(12)-\mathrm{Ca}-\mathrm{O}\left(14{ }^{\text {I }}\right.$)	129.1(2)
$\mathrm{O}(12)-\mathrm{Ca}-\mathrm{O}(24 \mathrm{II})$	78.6(1)
$\mathrm{O}(22)-\mathrm{Ca}-\mathrm{O}\left(14^{\mathrm{I}}\right)$	80.1(2)
$\mathrm{O}(22)-\mathrm{Ca}-\mathrm{O}\left(24{ }^{\text {II }}\right.$)	153.8(1)
$\mathrm{O}(14)^{\text {I }}$ - $-\mathrm{Ca}-\mathrm{O}\left(24{ }^{\text {II }}\right)$	81.9(2)
$\mathrm{O}(\mathrm{a})-\mathrm{N}-\mathrm{O}(\mathrm{b})$	122.9(8)
$\mathrm{O}(\mathrm{a})-\mathrm{N}-\mathrm{O}$ (c)	120.6(9)
$\mathrm{O}(\mathrm{b})-\mathrm{N}-\mathrm{O}$ (c)	115.7(8)

(d) Interspecies hydrogen-bonding interactions ($\mathrm{O} \cdots \mathrm{H}<2.5 \AA$); the angle subtended at the hydrogen is given in parentheses
(i) The ligand hydrogen atoms

$$
\mathrm{H}(13) \cdots \mathrm{O}\left(5^{\mathrm{III}}\right) \quad 2.2(1)[154(13)]
$$

$\begin{array}{ll}\mathrm{H}(23) \cdots \mathrm{O}\left(4^{\mathrm{IV}}\right) & 1.8(1)[140(10)] \\ \mathrm{H}(25) \cdots \mathrm{O}\left(12^{\mathrm{V}}\right) & 2.3(1)[157(13)]\end{array}$
(ii) The water hydrogen atoms

$\mathrm{H}(1 \alpha) \cdots \mathrm{O}\left(\mathrm{bI}^{\mathrm{I}}\right)$	$2.2(1)[149(15)]$	$\mathrm{H}(2 \alpha) \cdots \mathrm{O}\left(14^{\mathrm{I}}\right)$	$2.4(1)[103(8)]$
$\mathrm{H}(2 \alpha) \cdots \mathrm{O}\left(16^{\mathrm{VI}}\right)$	$2.3(1)[143(8)]$	$\mathrm{H}(2 \alpha) \cdots \mathrm{O}\left(4^{\mathrm{VII}}\right)$	$2.5(1)[102(8)]$
$\mathrm{H}(2 \beta) \cdots \mathrm{O}\left(4^{\mathrm{VII}}\right)$	$1.9(1)[144(10)]$	$\mathrm{H}(3 \alpha) \cdots \mathrm{O}\left(26^{\mathrm{VIII}}\right)$	$2.2(1)[151(12)]$
$\mathrm{H}(3 \beta) \cdots \mathrm{O}(\mathrm{a})$	$2.2(1)[166(13)]$	$\mathrm{H}(5 \alpha) \cdots \mathrm{O}(\mathrm{c})$	$1.8(1)[155(11)]$
$\mathrm{H}(4 \alpha) \cdots \mathrm{O}\left(16^{\mathrm{II}}\right)$	$2.0(1)[153(13)]$		

Transformations of the asymmetric unit (x, y, z) are denoted by the following Roman superscripts

$$
\begin{aligned}
& \text { I }(x, y, z-1) \\
& \text { II }(x, 1+y, z) \\
& \text { III }\left(\frac{1}{2}+x, 1-y, \frac{1}{2}-z\right) \\
& \text { IV }(x, y-1, z-1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { V }(x, y-1, z) \\
& \text { VI }\left(\frac{1}{2}+x, \frac{y}{y}, z-\frac{1}{2}\right) \\
& \text { VII }\left(\frac{1}{2}+x, 1-y, z-\frac{1}{2}\right) \\
& \text { VIII }\left(x-\frac{1}{2}, \bar{y}, z-\frac{1}{2}\right)
\end{aligned}
$$

addition to the already described purpurate bridging in the structure, the structure contains the usual strong hydrogen-bonding interactions from the purpurate and the water molecules (Table 2).

The nitrate ion, although not co-ordinated, has an interesting geometry which may be closely related to its lattice environment; as in the previous nitrate structures
in the series, the $\mathrm{N}-\mathrm{O}(i)$ distances correlate closely with the $\mathrm{O}(j)-\mathrm{N}-\mathrm{O}(k)$ angles, the longest distance being

Figure 1 Unit-cell contents projected down a; purpurate ligands lying at x ca. 0.25 are shown with open bonds, those at x ca. 0.75 with solid bonds

Figure 2 Projection of the calcium environment showing the distribution of the ligating atoms into the two approximately normal planes of the dodecahedral arrangement. 50% thermal ellipsoids are shown; hydrogen atoms are omitted for clarity
opposed to the smallest angle. In the 'isolated ' lattice nitrate, the variation in $\mathrm{N}-\mathrm{O}(i)$ shows an unusually wide range varying between $1.213(10)$ and $1.282(14) \AA$, while
the enclosed angles range between $115.7(8)$ and $122.9(8)^{\circ}$ Examination of the hydrogen bonding about the nitrate shows that all nitrate oxygens are associated with hydro-

Table 3

(a) Least-squares planes, calculated through the $\mathrm{C}(n \mathbf{1}, n 2$, $n 4, n 6), \mathrm{N}(n 3, n 5)$ skeleton of each barbiturate segment of the purpurate in the form $p X+q Y+r Z=s$, where the right-handed orthogonal (\AA) frame is defined with X parallel to a, Z in the $a c$ plane. Atom deviations (\AA) are given in square parentheses, values for segment 1 preceding those for segment 2. The estimated standard deviations of the defining atoms are in \AA The angle between the normals to the two barbiturate planes of each ligand is θ°

Segment n	1	2
$10^{4} p$	9016	9927
$10^{4} q$	-3566	-0512
$10^{4} \gamma$	2449	-1093
s	2.941	1.700
σ	0.07	0.06
χ^{2}	233	159
θ		31.8

[C(11) 0.11, 0.09; C(12) $-0.08,-0.05 ; \mathrm{N}(13) 0.00,-0.01$; $\mathrm{C}(14) 0.04,-0.05 ; \mathrm{N}(15)-0.01,-0.01 ; \mathrm{C}(16)-0.06$, $-0.06 ; \mathrm{N}(0) 0.17,0.13 ; \mathrm{O}(12)-0.26,-0.23 ; \mathrm{O}(14) 0.06$, $0.07 ; \mathrm{O}(16)-0.30,-0.33 ; \mathrm{Ca}-0.80,-0.31]$
(b) Least-squares ' planes' in the same form defined by (i) Ca , $\mathrm{N}(0), \mathrm{O}(12,22), \mathrm{O}\left(24^{\mathrm{II}}\right)$, and (ii) $\mathrm{Ca}, \mathrm{O}(1,2,3), \mathrm{O}\left(14^{\mathrm{I}}\right)$

	$10^{4} p$	$10^{4} q$	$10^{4} r$	s	σ	x^{2}
(i)	9981	-0291	-0528	2.028	0.12	607

(ii) $\begin{array}{lllllll} & 0057 & 10000 & 0063 & 1.180 & 0.10 & 371\end{array}$
[Deviations: $\mathrm{Ca},-0.07 ; \mathrm{O}(1),-0.10 ; \mathrm{O}(2),-0.04 ; \mathrm{O}(3)$, 0.09 ; $\mathrm{O}(14 \mathrm{I}), 0.11$]
gen bonds, the shortest of which is associated with the largest $\mathrm{N}-\mathrm{O}(i)$ distance. The thermal motion of $\mathrm{O}(\mathrm{c})$ is excessively high in comparison with the remainder of the structure and may be indicative of disorder.
[6/1550 Received, 9th August, 1976]

